[2(y+5)-5]+9=5(y-1)

Simple and best practice solution for [2(y+5)-5]+9=5(y-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for [2(y+5)-5]+9=5(y-1) equation:


Simplifying
[2(y + 5) + -5] + 9 = 5(y + -1)

Reorder the terms:
[2(5 + y) + -5] + 9 = 5(y + -1)
[(5 * 2 + y * 2) + -5] + 9 = 5(y + -1)
[(10 + 2y) + -5] + 9 = 5(y + -1)

Reorder the terms:
[10 + -5 + 2y] + 9 = 5(y + -1)

Combine like terms: 10 + -5 = 5
[5 + 2y] + 9 = 5(y + -1)

Remove brackets around [5 + 2y]
5 + 2y + 9 = 5(y + -1)

Reorder the terms:
5 + 9 + 2y = 5(y + -1)

Combine like terms: 5 + 9 = 14
14 + 2y = 5(y + -1)

Reorder the terms:
14 + 2y = 5(-1 + y)
14 + 2y = (-1 * 5 + y * 5)
14 + 2y = (-5 + 5y)

Solving
14 + 2y = -5 + 5y

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Add '-5y' to each side of the equation.
14 + 2y + -5y = -5 + 5y + -5y

Combine like terms: 2y + -5y = -3y
14 + -3y = -5 + 5y + -5y

Combine like terms: 5y + -5y = 0
14 + -3y = -5 + 0
14 + -3y = -5

Add '-14' to each side of the equation.
14 + -14 + -3y = -5 + -14

Combine like terms: 14 + -14 = 0
0 + -3y = -5 + -14
-3y = -5 + -14

Combine like terms: -5 + -14 = -19
-3y = -19

Divide each side by '-3'.
y = 6.333333333

Simplifying
y = 6.333333333

See similar equations:

| 3x(n-1.8)=2n-(5-2n)+4 | | 5x-5=2x+3 | | 4a+6a+3-3=15 | | 2(a-x)(2x-6)= | | Sen(4x)=0 | | 6c-de= | | 7x-10=9x-6 | | X+8x^3=0 | | 5-7x=6x^2 | | 6a(8a+4y)= | | 4x(x+2)-8=3(x^2+4) | | B-6=-6+2 | | 4x^2-9x+9=2x+2 | | 8p+11=-5 | | (5-4i)(2+3i)= | | Y+5=-3(x-6) | | 262-(-35)= | | ln(10-3x)-2lnx=0 | | -2x^2-3= | | 3.6x-30=6 | | -6x^2(-7x^2+x-3)= | | 6a+-12a= | | 28.5w=37.8 | | y-12=4(x-7) | | =9x^2+29x+16 | | X(a+6)= | | -3/4x-16=28 | | 4(x-3y)= | | 3/4x--16=28 | | x+(0.14x)=1000000 | | -3+7=7 | | 3(x-2)+5-5(2x+4)=6 |

Equations solver categories